The realization space is [1 1 0 x1 - 1 0 1 1 0 x1^2 - 2*x1 + 1 1 1] [1 0 1 2*x1^2 - x1 0 1 0 x1 2*x1^3 - 3*x1^2 + x1 x1 -x1 + 1] [0 0 0 0 1 1 1 -x1 + 1 -2*x1^3 + x1^2 x1 x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (32*x1^12 - 136*x1^11 + 244*x1^10 - 236*x1^9 + 124*x1^8 - 24*x1^7 - 9*x1^6 + 6*x1^5 - x1^4) avoiding the zero loci of the polynomials RingElem[x1, 2*x1 - 1, x1 - 1, 3*x1^2 - 3*x1 + 1, 2*x1^2 - 2*x1 + 1, 4*x1^2 - 3*x1 + 1, 4*x1^2 - 5*x1 + 2, 2, 5*x1^3 - 7*x1^2 + 4*x1 - 1, 5*x1^2 - 6*x1 + 2, 2*x1^3 - 2*x1 + 1]